
Introduction Towards a cleaner object design Simple calculators

ASE: Plans and developments

Ask Hjorth Larsen

Simune Atomistics S.L.

Avenida de Tolosa 76, Donostia-San Sebastián, Spain

November 21, 2019

Introduction Towards a cleaner object design Simple calculators

(Thanks @jensj)

Introduction Towards a cleaner object design Simple calculators

Figure: Commits per month

Introduction Towards a cleaner object design Simple calculators

Development work�ow

I Submit merge request on Gitlab

I Submitter �ghts desperately with CI tests

I Someone reviews the code

I (Right now someone == me, usually)

I We need experts for reviewing changes to exotic parts!

Common review comments

I Remember to write test

I Remember to add documentation

I Name the variables descriptively

I Don't repeat code, write a function

I Use existing implementation of X

Introduction Towards a cleaner object design Simple calculators

Project growth: Diverging use cases

Historical �evolutionary� growth

I Informal, �interactive� work�ow

I Focus on typical use cases (e.g. implicit I/O, parallelisation)

I Not so important if calculators work the same, user can adapt

Improve: Programmatic use and high-throughput

I Simple object states

I High level of generality (at expense of convenience)

I No magic shortcuts and assumptions

I Stable programming interface

I Limit scope and program size somehow (for libraries)

Introduction Towards a cleaner object design Simple calculators

�Code strain�

More features ⇒ Larger codebase ⇒ more central maintenance
Diverging use cases lead to �code strain�:

I Add C code for superspeed? But all users will need to compile.

I Add dependencies? Often inconvenient on supercomputers.

I Add parameters for convenient work�ow? API interface bloat.

We are mixing �user classes� and �programming interface� classes.
Possible solution: Modularize, split into multiple libraries.

Introduction Towards a cleaner object design Simple calculators

A word on funding

I Thanks to Simune Atomistics for supporting ASE

I Open source-friendly company

Introducing ASAP

I (Not related to ASE calculator of the same name)

I Integrated program to perform atomistic simulations

I Currently under development

I Currently focusing on Siesta

I (However: GUI has proprietary license)

Introduction Towards a cleaner object design Simple calculators

Band structures in 2016 (from gpaw 1.1.0 docs)

from ase.dft.kpoints import ibz_points , get_bandpath

points = ibz_points['fcc']

G = points['Gamma ']

X = points['X']

W = points['W']

K = points['K']

L = points['L']

kpts , x, X = get_bandpath ([W, L, G, X, W, K], calc.atoms.cell , npoints =60)

calc.set(kpts=kpts)

atoms.get_potential_energy ()

e_kn = np.array([calc.get_eigenvalues(k) for k in range(len(kpts))])

I ASE knows the special points, builds band path

I But: Many imports, repetitive work

I Code does not even entirely �t on a slide

Introduction Towards a cleaner object design Simple calculators

Band structures in 2017

After �spring cleaning� for ASE paper:

calc.set(kpts={'path': 'GXWKL ', 'npoints ': 60})

atoms.get_potential_energy ()

bs = calc.band_structure ()

bs.plot(filename='bandstructure.png', show=True , emax =10.0)

I Pass special points as convenient string

I ASE automatically recognizes unit cell

I Shortcut on calculator for extracting band structure

I But: Logic hidden beneath deep layers

I How do I see where 'X' is without calculating?

Introduction Towards a cleaner object design Simple calculators

Working with band structures now

>>> print(atoms.cell.get_bravais_lattice (). description ())

FCC(a=5.43)

Variant name: FCC

Special point names: GKLUWX

Default path: GXWKGLUWLK ,UX

Special point coordinates:

G 0.0000 0.0000 0.0000

K 0.3750 0.3750 0.7500

L 0.5000 0.5000 0.5000

U 0.6250 0.2500 0.6250

W 0.5000 0.2500 0.7500

X 0.5000 0.0000 0.5000

>>> print(atoms.cell.bandpath('GXWKL'))

BandPath(path='GXWKL ', cell =[3x3], special_points ={ GKLUWX}, kpts =[14x3])

>>> bs = calculate_band_structure(atoms , path)

>>> bs.write('bs.json')

Introduction Towards a cleaner object design Simple calculators

Simple object designs

Push for simpler objects in ASE

I Small objects with well-de�ned data and limited roles

I Meaningful string representations

I Easy plotting: obj.plot(...)

I Easy I/O: obj.write('bs.json')

I Command-line integration: $ ase band-structure bs.json

I In short: We always �know what we have� in front of us.

Introduction Towards a cleaner object design Simple calculators

Complex objects

I Most objects in ASE are not simple

I Di�erent levels and types of information stored

I How can you tell whether two objects are equal?

I Can you save to �le and completely restore?

I Sequential coupling

Introduction Towards a cleaner object design Simple calculators

I Sequential coupling:
Work�ow becomes �magic
incantation�

I Must call methods in right
order:

obj = MyClass (...)

obj.initialize ()

obj.calculate ()

obj.read()

x = obj.useful_method ()

I Complex state: Not clear
what the object can do and
when. Source: Francisco Goya /

Wikipedia

Introduction Towards a cleaner object design Simple calculators

Solution: Split into two or more objects:

calculator = ThingCalculator (...)

result = calculator.calculate ()

result.plot()

I Simple state: Both objects are fully operational

I Portable outputs! Possible to represent outputs from another
program in common framework.

I Currently: Always rely on ASE implementation

Introduction Towards a cleaner object design Simple calculators

Proposal

I Calculator → Calculator + CalculatorOutput

I Vibrations → VibrationCalculator + VibrationalModes

I Phonons → PhononCalculator + PhononModes

Also clean up others (EOS, NEB, . . .).

Introduction Towards a cleaner object design Simple calculators

Complexity of Atoms and calculators

Having calculators

I Do Atoms have a calculator? Maybe.

I Does the calculator have results on it? Maybe.

I Can the calculator actually calculate? Maybe.

In other words: If you have an Atoms object, you don't entirely
know what you really have.

Introduction Towards a cleaner object design Simple calculators

Roles of calculators in ASE

I Store input parameters

I Write input �le / send inputs

I Calculate (run external code / call big function)

I Read/load outputs

I Store outputs

I Caching, cache invalidation

I �Restart� (whatever that means)

I Manage �label�

Introduction Towards a cleaner object design Simple calculators

Calculators are di�cult to write

I New contributors rarely understand how to write calculators,
leading to redundant implementations

I Di�cult to understand interactions with Calculator superclass

I State is too complex

Introduction Towards a cleaner object design Simple calculators

Idea 1: �Data-driven� calculator

I Identify everything that any calculator ever wants to do

I Write a few actual classes to support those things

I Express every calculator as static information on which those
calculators run

I Advantage: Minimizes code which we cannot easily test

Introduction Towards a cleaner object design Simple calculators

Snippet from Quantum Espresso calculator:

def set(self , ** kwargs):

changed_parameters = FileIOCalculator.set(self , ** kwargs)

if changed_parameters:

self.reset ()

def write_input(self , atoms , properties=None , system_changes=None):

FileIOCalculator.write_input(self , atoms , properties , system_changes)

io.write(self.label + '.pwi', atoms , **self.parameters)

def read_results(self):

output = io.read(self.label + '.pwo')

self.calc = output.calc

self.results = output.calc.results

Small methods forward information to specialized functions.
Espresso is the smallest and therefore the best calculator.

Introduction Towards a cleaner object design Simple calculators

Tabulate static information in �calculator template�:

class CalculatorTemplate:

def __init__(self , name , implemented_properties ,

command ,

input_file , input_format ,

output_file , output_format):

<save variables on self >

def new(self , ** kwargs):

calc = DataDrivenCalculator(template=self ,

** kwargs)

return calc

I Single implementation: Guaranteed consistency, easy testing

I But: Some calculators automatically search for
pseudopotentials

I Also: Some calculators use multiple input/output �les

Introduction Towards a cleaner object design Simple calculators

Idea 2: Split calculator class

I Calculator inputs: Name + parameters (dictionary)

I Engine: Execute actual calculation

I Loader: Loads outputs from �les/memory

I Calculator outputs: Static bu�er with output

Introduction Towards a cleaner object design Simple calculators

How much can atoms/calculators be simpli�ed?

Current object structure

I Atoms

I Atoms with optional calculator

I Atoms with optional calculator with optional results

Alternative object structure

I Atoms

I Calculator with Atoms

I Results object with calculator inputs and Atoms

Alternative structure is cleaner: Nothing is optional or uncertain.
Uncertain whether we can do this in practice though.

Introduction Towards a cleaner object design Simple calculators

Conclusions

I It would be great to simplify many classes in ASE.

I Your help is appreciated!

I Can things be done compatibly or would we need an ase-4.0?

	Introduction
	

	Towards a cleaner object design
	

	Simple calculators
	

