
http://bit.ly/ase-codere�nery-2019

1 / 39

http://bit.ly/ase-coderefinery-2019

Fail Forward: Development of
Reproducible and Reusable software is a
learning experience
Bjørn Lindi and Radovan Bast

NeIC/ NTNU & NeIC/ UiT The Arctic University of Norway

Text is free to share and remix under CC-BY-4.0.

Credits: Jonas Juselius, Roberto Di Remigio, Ole Martin Bjørndalen

2 / 39

http://bast.fr/
https://neic.nordforsk.org/
https://www.ntnu.no/
https://neic.nordforsk.org/
https://uit.no/
https://creativecommons.org/licenses/by/4.0/
https://github.com/juselius
http://totaltrash.xyz/
https://github.com/olemb

Fail forward?

3 / 39

Fail forward?
Give yourself the freedom to make mistakes, establish short
feed back cycles.

4 / 39

Reproducibility?

5 / 39

Reproducibility?
Doubt about 150 published chemistry studies

6 / 39

https://arstechnica.com/information-technology/2019/10/chemists-discover-cross-platform-python-scripts-not-so-cross-platform/

Reusable?

7 / 39

Reusable?
The bush versus the tree

8 / 39

Write the tests �rst!

9 / 39

Write the tests �rst!
.. but I know what I am doing, why should I write the tests first?

10 / 39

What you "know" is a mix of...
True knowledge
A set of assumptions

11 / 39

What you "know" is a mix of...
True knowledge
A set of assumptions

Some of the assumptions are wrong.
A test written first can reveal this.

12 / 39

Implementing a feedback cycle
By writing tests first you implement a feedback cycle.
Writing tests specifying behavior, you create a active environment which
relates to your code.
If behavior is broken, it shows up immediately.

13 / 39

Test-�rst development
It is a design methodology.
"It helps developers build high quality code by forcing them to write
testable code and by concretizing requirements." --David Scott Bernstein
[1]

14 / 39

Learn Test-Driven Development

15 / 39

Starting on red.
Focus on one test at a time, and implement the new behavior step by step -
with short feedback cycles.
Name the test properly - it is the test of a new behavior/feature.

16 / 39

Getting to green.
We only write as much code as needed to pass the test. If implies copy
code, we copy code. If mean using constants, we use constants.

First we solve "that works" part of the problem. Then we solve the "clean
code" part(that is part of the next step - refactoring). Divide et imperia.

17 / 39

Refactor - incorporate the learning experience from
satisfying the test

To get passed the test, you did some sins. Now you make it right.
Get rid of duplication.
Let the code express your learning from the outside-in/inside out ping-
pong.
Make the code readable and understandable.
Tidy up and make the code CLEAN.

18 / 39

Start over again, add new functionality

19 / 39

What is CLEAN code?

20 / 39

What is CLEAN code?
It is Cohesive.
It is Loosely coupled.
It is Encapsulated.
It is Assertive.
It is Non-redundant

This is taken from [1].

21 / 39

Quality Code is Cohesive
In software development cohesive means entities should have a single
responsibility.

22 / 39

Quality Code is Loosely Coupled
"Code that is loosely coupled indirectly depends on the code it uses so it is
easier to isolate, verify, reuse and extend." [1]

Slide taken from Complexity in software development by Jonas Juselius

23 / 39

https://github.com/scisoft/complexity

Quality Code is Encapsulated.
Encapsulated code hide implementation details from the rest of the world.
You separate what something does from how it is done, which gives you
freedom to change how later on.

24 / 39

Quality Code is Assertive
The opposite is inquisitive: Don't be so inquisitive. It's none of your business.
Software objects should not be inquisitive; they should be authoritative, in
charge of them self.

25 / 39

Quality Code is Nonredundant
Don't repeat your self (DRY)

26 / 39

That was a nice acronym - CLEAN - So what?

27 / 39

Increase Quality today to increase Velocity to tomorrow.

time

development
speed

quick hacks

properly implemented

28 / 39

Version Control System

29 / 39

Central repository/ project place

30 / 39

"...packages has grown rather organically..."

31 / 39

"...packages has grown rather organically..."
You are using a version control system like git.
You have some experience with at least one aspect of CLEAN code.
You have developed a sense of how to test and develop code
incrementally (TDD)

32 / 39

"...packages has grown rather organically..."
You are using a version control system like git.
You have some experience with at least one aspect of CLEAN code.
You have developed a sense of how to test and develop code
incrementally (TDD)

This is necessary experience to be able to work with Legacy
Code.

33 / 39

Other feedback cycles you should establish:

Pair programming

Code-review

34 / 39

Pair programming and Test Driven
Development
"TDD supported with pair programming is a natural fit. Learning TDD is made
dramatically easier with a support system in place. Developers are more likely
to revert to old, non-TDD habits without a bit of peer pressure from their
teammates. Sitting with an experienced TDDer can be more than half the time
need to ingrain the habit of TDD. Swapping pairs can help ensure that tests are
written first and with care."

35 / 39

Code Review
<img src="https://cdn.jsdelivr.net/gh/blindij/modular-code-
development@4e0970d3c821b6984362a62682aeae7c43f9f7bb/img/draft_pr.png
style="width: 40%; "/>

36 / 39

https://cdn.jsdelivr.net/gh/blindij/modular-code-development@4e0970d3c821b6984362a62682aeae7c43f9f7bb/img/draft_pr.png

Automate testing and checking of code coverage
Use a Continuous Integration service like Travis for automatic testing.
Use a coverage service like Coveralls to verify coverage automatically.

37 / 39

Licensing
Think about how you would like your software to be used and cited.
Don't lock yourself out from using your code later.
David Heinemeier Hansson about MIT License, Open Source [6]

38 / 39

https://m.signalvnoise.com/open-source-beyond-the-market/

References
[1] Beyond Legacy Code - Nine practices to extend the life (and value of) of
Your Software , by David Scott Bernstein
[2] Test Driven Development: By Example, by Kent Beck
[3] Modern C++ Programming with Test-Driven Development, by Jeff
Langr
[4] Pro Git, by Scott Chacon and Ben Straub
[5] tmux 2 productive mouse-free development by Brian Hogan, The
Pragmatic Programmers / Chapter 5 pair programming with tmux
[6] "Open source beyond the market"
Cicero:Serving presentation slides written in Markdown
CodeRefinery workshops: https://coderefinery.org/workshops

39 / 39

https://m.signalvnoise.com/open-source-beyond-the-market/
https://cicero.readthedocs.io/en/latest/
https://coderefinery.org/workshops

