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What is Sella? (D=

Sella is a tool for finding first order saddle points.

Fi\rst order saddle poir)ts

“1Minima
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How do | use Sella?

Install Sella with pip: pip3 install sella --user, or download
from github: https://github.com/zadorlab/sella.

To use Sella:

from ase.io import read
from ase.calculators.somecalc import SomeCalc

from sella import Sella

atoms = read('my_atoms_geometry.xyz')
atoms.calc = SomeCalc(...)

opt = Sella(atoms)

opt.run(fmax=0.01)
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https://github.com/zadorlab/sella

How does Sella work?

Common approach

Diagonalize Hessian
iteratively

Change Structure

Secant B update
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Sella

Diagonalize Hessian
iteratively

Multisecant B update

Change Structure

Secant B update
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Newton-Raphson

Expand the energy € in a 2nd order Taylor series around q:
- 1
&a+s)=e(a)+s'g+ ;s Hs

Solve for g—g =0:
s = —H_lg
Problems:
m We don't want to calculate H
m Replace it with an approximation B (Quasi-Newton)
m s may be far too big
m Use a linesearch or a trust region method

m This can converge to a minimum or a saddle point
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Rational function optimization

RFO replaces the Taylor series with a rational approximation:

(s) = sg+—sTBs
M) = s Twis

The stationary points of this function can be found by solving a
generalized eigenvalue problem:

o 8 L= 21

To find a minimum, determine s from the leftmost eigenvector.
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Partitioned rational function optimization ULR

P-RFO splits the eigenvalue problem into two eigenvalue problems:

|:V(max)TBV(max) V(max)Tg:| |:s(max):| ) (max) |:W(max) 0:| |:s(max):|
=24

gTv(max) 0 1 0 T 1 1
V(min) TBv(min) V(min) Tg S(min) 5 (min) W(min) 0 s(min)
gT\/(min) 0 1 = ap 0 T 1 1

s — V(max)s(max) + V(min)s(min)

To find a first order saddle point, V(™2%) should contain only the
leftmost eigenvector of B, and V™™ should contain all other
eigenvectors.

For this approach to work, the leftmost eigenvector of B must be
close to the leftmost eigenvector of H!
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Iterative Hessian diagonalization .

For P-RFO to perform well, the leftmost eigenvector of B should
closely match the leftmost eigenvector of H.

But how can we determine the leftmost eigenvector of H?

Iterative diagonalization with Rayleigh-Ritz requires only
Hessian-vector products (e.g. Hs), which can be approximated
with finite difference:

Hs ~ 8@+ 7s) —g(a)
U
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Practical Hessian-vector products

import numpy as np
from scipy.sparse.linalg import LinearOperator

1

2

3

4 class NumericalHessian(LinearOperator):
5 dtype = np.dtype('float64')

6 def __init__(self, atoms, eta=le-4):
7 self.atoms = atoms

8 n = 3 * len(self.atoms)

9 self.shape = (n, n)

10 self.eta = eta
11 self.x0 = self.atoms.positions.copy()
12 self.g0 = -self.atoms.get_forces().ravel()
13 def _matvec(self, v):
14 self.atoms.positions = self.x0 + self.eta * v.reshape((-1, 3))
15 gplus = -self.atoms.get_forces().ravel()
16 self.atoms.positions = self.x0.copy()
17 return (gplus - self.g0) / self.eta
2019-11-19 12
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Diagonalization algorithm

1 import numpy as np
2 from scipy.linalg import eigh
3 from sella.utilities.math import modified_gram_schmidt
4
5 def rayleigh_ritz(H, gamma, B):
6 S = eigh(B)[11[:, :11 # start w/ leftmost eigenvector of B
7 Y = H.dot(8)
8 for _ in range(n - 1):
9 vals, vecs = eigh(Y.T @ S)
10 x =8 @ vecs[:, 0]
11 Hx = Y @ vecs[:, 0]
12 r = Hx - vals[0] * x
13 if np.linalg.norm(r) < gamma * np.abs(vals[0]):
14 return S @ vecs, Y @ vecs
15 S = np.hstack((S, modified_gram_schmidt(jd0(x, r, vals[0], B), S)))
16 Y = np.hstack((Y, H.dot(S[:, -11)))
2019-11-19 13



@ﬁ:’.&
Laboratories
Introduction

Theory

Approximate Hessian updates
Results

Wrap up

2019-11-19 14




()=
National
Laboratories

Hessian updates

Given an approximate Hessian B, a displacement vector
s = q" — q, and the change in the gradient vectory =g* — g,
find BT = B + E such that:

mBfs=y
mE"=E
(] ||E||§/|,1 =Tr [EM_lETM_l] is minimized

General solution for any symmetric positive definite M:
. o 1 1["
B+ =B + [J u] |:1 —jTS:| |:UT:|
j=y—Bs
u=Ms [sTMsr1
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Multisecant Hessian updates B

Given an approximate Hessian B, a matrix of displacement vectors
S, and the Hessian-vector products Y = HS, find Bt =B+ E

such that:
mB'S=Y
mE'=E
] ||E||§/|_1 =Tr [EM_lETM_l} is minimized
General solution for any symmetric positive definite M:
0o | J7
s sy L[]
J=Y-BS
-1
U= Ms[S"ms]|
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Sella paper @ .
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Accelerated Saddle Point Refinement through Full Exploitation of
Partial Hessian Diagonalization

Eric D. Hermes,® Khachik Sargsyan, Habib N. Najm, and Judit Zador*

Combustion Research Facility, Sandia National Laboratories, Livermore, California 94551-0969, United States
© Supporting Information

ABSTRACT: Identification and refinement of first order saddle point (FOSP) Looser di ization convergenct
structures on the potential energy surface (PES) of chemical systems is a
computational bottleneck in the characterization of reaction pathways. Leading
FOSP refinement strategies for modestly sized molecular systems require
calculation of the full Hessian matrix, which is not feasible for larger systems
such as those encountered in heterogeneous catalysis. For these systems, the
standard approach to FOSP refinement involves iterative diagonalization of the i

Hessian, b\l;tpthis comes at the cost of longer refinement trajedogries due to the lack Tighter diagonalization convergence
of accurate curvature information. We present a method for incorporating

information obtained by an iterative diagonalization algorithm into the construction of an approximate Hessian matrix that
accelerates FOSP refinement. We measure the performance of our method with two established FOSP

and find a 50% reduction on average in the number of gradient evaluations required to converge to a FOSP for one benchmark
and a 25% reduction on average for the second benchmark.

Total st s Optimum
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Optbench.org benchmarks () ..
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o TETATATS
Code mean min  max Code mean min max
Sella 70 24 159 Sella 53 31 108
Optim 145 57 565 Optim 71 43 143
Pele 192 50 1488 Pele 88 52 198
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Accuracy of the approximate Hessian

Approx. Hessian eigenvalues Error in approx. Hessian
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How eigensolver convergence affects performance

Starting close to the saddle point  Starting far from the saddle point
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Other features and future work ) .

Other features of Sella:
m Minimization (though with somewhat poor performance)
m Intrinsic Reaction Coordinate (IRC) calculations
m Constrained optimization (minima and saddle points)
m Fixed atom, bond distance, bending angle, and dihedral angle
constraints currently implemented
m Translational /rotational modes are excluded during
optimization using constraints
Future work and work in progress
m Implement internal coordinate optimization
m Improve minimization performance

m Implement surrogate-accelerated optimization (e.g. using
Gaussian process regression)
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