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What is Sella?
Sella is a tool for finding first order saddle points.
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How do I use Sella?

Install Sella with pip: pip3 install sella --user, or download
from github: https://github.com/zadorlab/sella.

To use Sella:

1 from ase.io import read
2 from ase.calculators.somecalc import SomeCalc
3
4 from sella import Sella
5
6 atoms = read('my_atoms_geometry.xyz')
7 atoms.calc = SomeCalc(...)
8 opt = Sella(atoms)
9 opt.run(fmax=0.01)
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How does Sella work?

Common approach

Diagonalize Hessian
iteratively

Change Structure

Secant B update

Sella

Multisecant B update

Diagonalize Hessian
iteratively

Change Structure

Secant B update
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Newton-Raphson

Expand the energy ϵ in a 2nd order Taylor series around q:

ϵ̃(q + s) = ϵ(q) + sTg +
1

2
sTHs

Solve for ∂ϵ̃
∂s = 0:

s = −H−1g

Problems:
We don’t want to calculate H

Replace it with an approximation B (Quasi-Newton)
s may be far too big

Use a linesearch or a trust region method
This can converge to a minimum or a saddle point
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Rational function optimization

RFO replaces the Taylor series with a rational approximation:

µ(s) =
sTg + 1

2sTBs
1 + sTWs

The stationary points of this function can be found by solving a
generalized eigenvalue problem:[

B g
gT 0

] [
s
1

]
= 2µ

[
W 0
0T 1

] [
s
1

]
To find a minimum, determine s from the leftmost eigenvector.
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Partitioned rational function optimization

P-RFO splits the eigenvalue problem into two eigenvalue problems:[
V(max)TBV(max) V(max)Tg

gTV(max) 0

] [
s(max)

1

]
= 2µ(max)

[
W(max) 0

0T 1

] [
s(max)

1

]
[
V(min)TBV(min) V(min)Tg

gTV(min) 0

] [
s(min)

1

]
= 2µ(min)

[
W(min) 0

0T 1

] [
s(min)

1

]
s = V(max)s(max) + V(min)s(min)

To find a first order saddle point, V(max) should contain only the
leftmost eigenvector of B, and V(min) should contain all other
eigenvectors.
For this approach to work, the leftmost eigenvector of B must be
close to the leftmost eigenvector of H!
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Iterative Hessian diagonalization

For P-RFO to perform well, the leftmost eigenvector of B should
closely match the leftmost eigenvector of H.

But how can we determine the leftmost eigenvector of H?

Iterative diagonalization with Rayleigh-Ritz requires only
Hessian-vector products (e.g. Hs), which can be approximated
with finite difference:

Hs ≈ g(q + ηs)− g(q)
η
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Practical Hessian-vector products

1 import numpy as np
2 from scipy.sparse.linalg import LinearOperator
3
4 class NumericalHessian(LinearOperator):
5 dtype = np.dtype('float64')
6 def __init__(self, atoms, eta=1e-4):
7 self.atoms = atoms
8 n = 3 * len(self.atoms)
9 self.shape = (n, n)

10 self.eta = eta
11 self.x0 = self.atoms.positions.copy()
12 self.g0 = -self.atoms.get_forces().ravel()
13 def _matvec(self, v):
14 self.atoms.positions = self.x0 + self.eta * v.reshape((-1, 3))
15 gplus = -self.atoms.get_forces().ravel()
16 self.atoms.positions = self.x0.copy()
17 return (gplus - self.g0) / self.eta
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Diagonalization algorithm

1 import numpy as np
2 from scipy.linalg import eigh
3 from sella.utilities.math import modified_gram_schmidt
4
5 def rayleigh_ritz(H, gamma, B):
6 S = eigh(B)[1][:, :1] # start w/ leftmost eigenvector of B
7 Y = H.dot(S)
8 for _ in range(n - 1):
9 vals, vecs = eigh(Y.T @ S)

10 x = S @ vecs[:, 0]
11 Hx = Y @ vecs[:, 0]
12 r = Hx - vals[0] * x
13 if np.linalg.norm(r) < gamma * np.abs(vals[0]):
14 return S @ vecs, Y @ vecs
15 S = np.hstack((S, modified_gram_schmidt(jd0(x, r, vals[0], B), S)))
16 Y = np.hstack((Y, H.dot(S[:, -1])))
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Hessian updates

Given an approximate Hessian B, a displacement vector
s = q+ − q, and the change in the gradient vector y = g+ − g,
find B+ = B + E such that:

B+s = y
ET = E
∥E∥2M−1 = Tr

[
EM−1ETM−1

]
is minimized

General solution for any symmetric positive definite M:

B+ = B +
[
j u

] [0 1

1 −jTs

] [
jT
uT

]
j = y − Bs

u = Ms
[
sTMs

]−1
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Multisecant Hessian updates

Given an approximate Hessian B, a matrix of displacement vectors
S, and the Hessian-vector products Y = HS, find B+ = B + E
such that:

B+S = Y
ET = E
∥E∥2M−1 = Tr

[
EM−1ETM−1

]
is minimized

General solution for any symmetric positive definite M:

B+ = B +
[
J U

] [0 I
I −JTS

] [
JT

UT

]
J = Y − BS

U = MS
[
STMS

]−1
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Sella paper

DOI: 10.1021/acs.jctc.9b008692019-11-19 18



Optbench.org benchmarks

Code mean min max
Sella 70 24 159
Optim 145 57 565
Pele 192 59 1488

Code mean min max
Sella 53 31 108
Optim 71 43 143
Pele 88 52 198

DOI: 10.1021/acs.jctc.9b008692019-11-19 19



Accuracy of the approximate Hessian

Approx. Hessian eigenvalues Error in approx. Hessian

DOI: 10.1021/acs.jctc.9b008692019-11-19 20



How eigensolver convergence affects performance

Starting close to the saddle point Starting far from the saddle point

DOI: 10.1021/acs.jctc.9b008692019-11-19 21
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Other features and future work

Other features of Sella:
Minimization (though with somewhat poor performance)
Intrinsic Reaction Coordinate (IRC) calculations
Constrained optimization (minima and saddle points)

Fixed atom, bond distance, bending angle, and dihedral angle
constraints currently implemented
Translational/rotational modes are excluded during
optimization using constraints

Future work and work in progress
Implement internal coordinate optimization
Improve minimization performance
Implement surrogate-accelerated optimization (e.g. using
Gaussian process regression)
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