

Tools for atomic-scale model construction Cluster expansions and force constants

Erik Fransson Department of Physics Chalmers University of Technology

Tools for atomic-scale model construction

Force constant expansions

Taylor expansion of the potential energy

$$E = E_0 + \sum_i \Phi_i u_i + \frac{1}{2!} \sum_{ij} \Phi_{ij} u_i u_j + \frac{1}{3!} \sum_{ijk} \Phi_{ijk} u_i u_j u_k \dots$$

$$u_i \text{ Displacement from static equilibrium position}$$

Force constant expansions

Taylor expansion of the potential energy

$$E = E_0 + \sum_i \Phi_i u_i + \frac{1}{2!} \sum_{ij} \Phi_{ij} u_i u_j + \frac{1}{3!} \sum_{ijk} \Phi_{ijk} u_i u_j u_k \dots$$

$$u_i \text{ Displacement from static equilibrium position}$$

Phonon dispersions

$$\Phi_{ij} \to D_{\alpha\beta}(\boldsymbol{q}) \to \omega_k(\boldsymbol{q})$$

Momentum CHALMERS

Frequency

Force constant extraction

$$E = E_0 + \sum_{i} \Phi_i u_i + \frac{1}{2!} \sum_{ij} \Phi_{ij} u_i u_j + \frac{1}{3!} \sum_{ijk} \Phi_{ijk} u_i u_j u_k \dots$$

"Direct" approach: systematic enumeration

Harmonic approximation \rightarrow phonopy Third-order FCs \rightarrow phono3py, almaBTE \rightarrow Poor scaling with system size and order

$$\Phi_{ij} = \frac{\partial^2 E}{\partial u_i \partial u_j}$$
$$\approx -\frac{F_i(u_j) - F_i(0)}{u_j}$$

Force constant extraction

$$E = E_0 + \sum_{i} \Phi_i u_i + \frac{1}{2!} \sum_{ij} \Phi_{ij} u_i u_j + \frac{1}{3!} \sum_{ijk} \Phi_{ijk} u_i u_j u_k \dots$$

"Direct" approach: systematic enumeration

Harmonic approximation \rightarrow phonopy Third-order FCs \rightarrow phono3py, almaBTE \rightarrow Poor scaling with system size and order

$$\Phi_{ij} = \frac{\partial^2 E}{\partial u_i \partial u_j}$$
$$\approx -\frac{F_i(u_j) - F_i(0)}{u_j}$$

 $\Phi_{ij} = \Phi_{ij}(\boldsymbol{x})$

 $\min(\|Ax - f\|_2^2)$

"Regression" approach: fit to snapshots

→ TDEP & ALAMODE

Hellman et al. PRB 2011, Tadano et al. JPCM 2014

→ Compressive sensing Zhou, Ozolins *et al.* PRL 2014

hiphive

Generalizes regression approach and makes it easily accessible

Efficiency 2nd-order: Vacancy in BCC-Ta hiphive

Convergence with training size

Efficiency 2nd-order: Vacancy in BCC-Ta hiphive

Convergence with training size

Efficiency 3rd-order: Silicon

Thermal conductivity of Silicon via Boltzmann transport

$$\kappa_l = \frac{1}{2V} \sum_{j\boldsymbol{q}} \lambda_{j\boldsymbol{q}}(T) v_{j\boldsymbol{q}} c_{j\boldsymbol{q}}(T)$$

Requires third-order force constants

hiphive 🔀

Thermal conductivity of Silicon via Boltzmann transport

Efficiency 3rd-order: Silicon

Thermal conductivity of Silicon via Boltzmann transport

Anharmonicity in clathrates

Inorganic clathrate Ba₈Ga₁₆Ge₃₀

• Anharmonic Ba (rattler) modes

Guest: Ba Host: Ga, Ge

Anharmonicity in clathrates

Inorganic clathrate Ba₈Ga₁₆Ge₃₀

- Anharmonic Ba (rattler) modes
- Fourth-order model (6000 parameters)
- Reproduces anharmonicity of Ba

RSITY OF TECHNOLOGY

Anharmonicity in clathrates

Inorganic clathrate Ba₈Ga₁₆Ge₃₀

- Anharmonic Ba (rattler) modes
- Fourth-order model (6000 parameters)
- Reproduces anharmonicity of Ba
- Reproduces thermal conductivity

RSITY OF TECHNOLOGY

hiphive

Eriksson et al., Adv. Theory Simul. 2019, 1800184

Cluster Expansions

Expansion of the total energy in site occupations

Need efficient means to extract effective cluster interactions (ECIs) J_{α} \rightarrow Again a linear problem

Cluster Expansions

ice

Expansion of the total energy in site occupations

$$E(\boldsymbol{\sigma}) = E_0 + \sum_i J_i \sigma_i + \sum_{ij} J_{ij} \sigma_i \sigma_j + \sum_{ijk} J_{ijk} \sigma_i \sigma_j \sigma_k + \dots$$

CE construction for a Ag-Pd alloy icet

- zerolet + singlet
- + 24 pairs
- + 20 triplets
- + 35 quadruplets
- = 81 parameters

ARDR: fast convergence and sparse solutionLASSO: more false-positivesRFE: requires more structures

CE construction for a Ag-Pd alloy ice

CHALMERS UNIVERSITY OF TECHNOLOGY

Ag-Pd alloy: CE sampling

icet

CHALMERS

Ag-Pd alloy: CE sampling

ice

UNIVERSITY OF TECHNOLOGY

Clathrates

• Chemical order → thermoelectric performance Ångqvist *et al.* **2017**

Clathrates

• Chemical order → thermoelectric performance Ångqvist *et al.* **2017**

Zeolites

- Aluminium distribution on framework
- Löwenstein's rule violated

Magnus Fant 2019

Clathrates

• Chemical order → thermoelectric performance Ångqvist *et al.* **2017**

Zeolites

- Aluminium distribution on framework
- Löwenstein's rule violated
 Magnus Fant 2019

Interface systems

- Surface segregation in PdAuCu (Pernilla Tanner 2019)
- Stability of WC-Co interfacial phases (Martin Gren 2019)

icet features

• Structure generation

- Enumeration
- SQS (Special Quasi-random Structures)
- Ground-states via MIP (Mixed Integer programming)
- Training via scikit-learn
 - LASSO, ARDR, RFE, ...
- Monte Carlo sampling
 - Canonical ensemble
 - Semi-Grand canonical ensemble
 - Variance-constrained semi-grand canonical ensemble
 - Simulated annealing
 - Wang-Landau sampling

Future work: Configurational + Vibrational

 $\mathcal{Z} = \mathcal{Z}_{conf} \mathcal{Z}_{vib}$

Coupling between configurational and vibrational dofs → Very computational expensive

UNIVERSITY OF TECHNOLOGY

Tutorials

icet tutorial Thursday 1pm

setup

- cs = ClusterSpace(atoms, [6.0, 5.0], ['Ag', 'Pd'])
- sc = StructureContainer(cs)
- for structure in training_structures: sc.add_structure(structure)

training

opt = Optimizer(sc.get_fit_data(), fit_method='ardr')
opt.train()
ce = ClusterExpansion(cs, opt.parameters)

sample

calc = ClusterExpansionCalculator(ce, atoms)
mc = CanonicalEnsemble(atoms, calc, temperature=600)
mc.run(1000)

hiphive tutorial Thursday 3pm

setuµ

- cs = ClusterSpace(atoms, [8.0, 6.0])
 sc = StructureContainer(cs)
 for structure in training structures:
 - sc.add structure(structure)

training

opt = Optimizer(sc.get_fit_data(), fit_method='rfe')
opt.train()
fcp = ForceConstantPotential(cs, opt.parameters)

t write to phono3py format

fcs = fcp.get_force_constants(supercell)
fcs.write_to_phonopy('fc2.hdf5')
fcs.write_to_phono3py('fc3.hdf5')

The end

- Mattias Ångqvist
- William Muñoz
- Magnus Rahm
- Erik Fransson
- Joakim Brorsson
- Céline Durniak
- Piotr Rozyczko
- Thomas Rod
- Paul Erhart

- Fredrik Eriksson
- Erik Fransson
- Paul Erhart

https://materialsmodeling.org/software

Knut och Alice Wallenbergs Itiftelse

Extra

Cluster decomposition

General procedure

- 1. Generate list of clusters
- 2. Obtain symmetry operations
- 3. Categorize clusters into orbits
- 4. Identify independent parameters
- 5. Apply sum rules

Structure decomposition

hiphive

- 1. Generate structure e.g., by applying random displacements or superposing normal modes
- 2. Convert displacements u_i into "cluster vectors"

 → each structure yields a matrix A_i with
 N_{parameters} columns and 3N_{atoms} rows
- 3. Each structure comes with a target force vector

Parameter optimization

- 1. Compile multiple structures into one (large) fit matrix A
- 2. Solve the linear problem Ap=f

hiphive

Ridge-regression/LASSO/ $||\boldsymbol{A}\boldsymbol{p} - \boldsymbol{f}||_2^2 + \alpha ||\boldsymbol{p}||_1 + \beta ||\boldsymbol{p}||_2^2$

Automatic relevance determination regression (ARDR) Recursive feature elimination (RFE)

Cross-validation

