
Jakob Schiøtz1, Daniel S. Karls2, Mingjian Wen3, Ryan S. Elliott2, Ellad B. Tadmor2

1 Department of Physics, Technical University of Denmark
2 Department of Aerospace Engineering and Mechanics, University of Minnesota
3 Energy Technologies Area, Lawrence Berkeley National Laboratory

ASE Workshop, Gothenburg, Sweden, November 19-22, 2019

The KIM Calculator in ASE:
Reproducible Access to Reliable Classical Interatomic Models

NSF CDI (2009-2014); NSF CDS&E (2014-2018); NSF CMMT (2019-)

Ellad B. Tadmor (University of Minnesota)

Simulations of Materials - length scales

2

Defect dynamics:
Solve equation of
motion of the defects
(dislocations etc).

Continuum
Dynamics

Quantum mechanics: solve Schrödinger’s
equation for the electrons. Very precise,
very slow. Hundreds of atoms.

Classical Monte Carlo and Molecular
Dynamics: Describe atoms as
classical particles. Millions of atoms.

ASE

This
talk

Ellad B. Tadmor (University of Minnesota)

Classical Interatomic Models (IM)

3

ASE is often seen as
an interface to DFT
codes, however
support is growing for
classical interatomic
models (IMs).

quantum view of bonding

Integrate out the
electrons

classical interatomic model

Training
Set

best fit

Experimental
reference data

DFT results

fitting
parameters

eV(r1, r2, . . . , rN ;↵1, ↵2, . . .)

positions of
nuclei

Ellad B. Tadmor (University of Minnesota)

Menagerie of Interatomic Models (IMs)

4

‣ Many different kinds of IMs have been developed over the years:

Pair
Potentials

Cluster
Potentials

Pair/Cluster
Functionals

Bond-order
Potentials

Machine learning
Potentials

⚙⚙⚙
⚙⚙⚙⚙

⚙

⚙⚙

⚙
⚙

⚙⚙

‣ The reduced cost of IMs makes it possible to simulate much
larger systems and study phenomena inaccessible to DFT.

Because of the short time scale accessible
with molecular dynamics, the sample must be
deformed rapidly. The calculated flow stresses
are thus obtained at a very high strain rate as
compared to experiments, and not unexpectedly
they are therefore somewhat higher than the
flow stresses observed experimentally. For
grain sizes above 15 nm where experiments are
readily available, the difference is a factor of 2
to 3 (3). However, one should also note that
microvoids and flaws are experimentally un-
avoidable and may tend to reduce the measured
values (3, 7). If the strain rate sensitivities of the
two deformation mechanisms are different, the
balance between them could be different at
experimentally accessible strain rates. In that
case, the optimal grain size would shift slightly
compared to what we report here.

The mechanisms behind the plastic defor-
mation can be disclosed through an atomic-
scale analysis of the simulation results. Fig-
ure 2 shows atomic-scale structures obtained
after 10% deformation and compares them
with the atomically resolved strain that re-
sults from an additional 1% deformation. For
the small grain sizes (Fig. 2, C and D), the
strain is localized in the grain boundaries,
indicating that the main deformation mecha-
nism operating here is grain boundary slid-
ing. For the larger grains (Fig. 2, A and B),
the strain lies mainly at glide planes in the
interior of the grains, although some strain is
still seen in the grain boundaries. This is an
indication that the deformation has occurred
mainly through dislocations moving through
the grains. A change in deformation mecha-

nism has therefore occurred. Of course, this is
not a sharp transition, and, even in the case of
the 49-nm grains, some deformation is seen
to occur in the grain boundaries. Earlier sim-
ulations with grain sizes up to 12 nm have
shown that for small grains the dislocation
activity increases with grain size as a precur-
sor to the transition (20). Recent simulations
of nanocrystalline aluminum for large grains
with a quasi-two-dimensional grain structure
also demonstrated dislocation-mediated plas-
tic deformation (21, 22). There is experimen-
tal evidence for a change in mechanism, too.
Nanocrystalline gold with grain sizes in the
10- to 20-nm range deforms without disloca-
tion activity (23), whereas dislocations are
observed in the deformation of nanocrystal-
line nickel with a grain size down to 30 nm
(20, 24). Dislocations may have been seen in
nickel grains as small as 10 nm, but because
of the difficulties of controlling the image
conditions in such small grains they could not
be identified unambiguously (20).

Atomic-scale analysis of the simulations for
large grains reveals more detailed information
about the dislocation processes in the Hall-
Petch regime, consistent with the behavior ex-
pected in coarse-grained materials. In the flow
regime, a great variety of dislocation processes
are observed. Throughout the simulation, new
dislocations are generated at the grain bound-
aries, glide through grains, and are absorbed at
other grain boundaries. At these grain sizes, the
main sources of new dislocations are the grain
boundaries rather than, for example, Frank-
Read sources in the grain interiors. The dislo-
cations sometimes intersect or get trapped by
stacking faults. However, the interactions do
not lead to dislocation tangles and more perma-
nent immobilization of the dislocations, al-
though rarely a few Lomer-Cottrell locks are
created and soon after destroyed. This is in
good agreement with the stress-strain curves,
which do not exhibit strain hardening; i.e., the
flow stress does not increase with strain. This

Fig. 2. The deformation mode at
different grain sizes. (A) The struc-
ture that appears in the simulation
with average grain diameter d ! 49
nm after 10% deformation. Blue at-
oms are in a perfect face-centered
cubic crystalline environment; yel-
low atoms are at stacking faults and
twin boundaries; and red atoms are
in grain boundaries and dislocation
cores. (B) The additional strain ac-
cumulated when the deformation is
increased from 10 to 11%. The
main deformation is seen to occur
on slip planes in the interior of the
grains. (C and D) show the same for
a system with d ! 7 nm. Here, the
majority of the deformation occurs
in the grain boundaries. Because the
system in (A) and (B) contains 102
million atoms, the circles indicating
the individual atoms have been omitted. The scale bars in (B) and (D) are 5 nm.

Fig. 3. A look inside
the large grain in the
upper-left corner of
Fig. 2A. Only atoms in
grain boundaries and
dislocation cores are
shown; atoms in dislo-
cation cores are light-
er colored than grain
boundary atoms. In
the right side, a full
dislocation split into
two partial disloca-
tions is seen (A); most
other dislocations are
single Shockley partial
dislocations. Some of
the dislocations pile
up against the grain
boundary in the back-
ground; the pileups
are indicated by the
arrows (B) and (C). By
watching an anima-
tion of the simulation,
it can be seen that
these are indeed pile-
ups. The dislocation
activity leading to this
configuration is shown in Movie S1.

R E P O R T S

5 SEPTEMBER 2003 VOL 301 SCIENCE www.sciencemag.org1358

Dislocations in a grain of nanocrystal copper. Molecular Dynamics
simulation with 100 million atoms.

Schiøtz and Jacobsen, Science, 301:1357, 2003.

‣ However the proliferation of IMs and classical simulation codes have created
problems that the Knowledgebase of Interatomic Models (KIM)
project is attempting to address.

Ellad B. Tadmor (University of Minnesota)

Workflow: Simulating a new material

5

1. Identify one (or more) interatomic models in the literature.
– Select the one you think is most promising.

2. Code the equations in your favorite MD code (ASE, of course!).
– Also code the derivatives (the forces)

3. Test it.
4. Debug it.
5. If no parameters: Fit to DFT and experimental data.
6. Evaluate the model on known, relevant materials properties.
– If it is good: Do some science.
– If it is bad: Go back to step 1.

Ellad B. Tadmor (University of Minnesota)

Workflow: Simulating a new material

6

1. Identify one (or more) interatomic models in the literature.
– Select the one you think is most promising.

2. Code the equations in your favorite MD code (ASE, of course!).
– Also code the derivatives (the forces)

3. Test it.
4. Debug it.
5. If no parameters: Fit to DFT and experimental data.
6. Evaluate the model on known, relevant materials properties.
– If it is good: Do some science.
– If it is bad: Go back to step 1.

Ellad B. Tadmor (University of Minnesota)

OpenKIM Workflow: Simulating a new material

7

1. Identify one (or more) interatomic models on OpenKIM.org
– Select the one that reproduce relevant materials parameters the best.

2. Download and compile the model
– Your favorite MD program can directly use it (ASE, ASAP, LAMMPS)

3. (Test it).
4. Debug it.
5. If no parameters: Fit to DFT and experimental data – upload it.
6. Evaluate the model on known, relevant materials properties.
– If it is good: Do some science.
– If it is bad: Go back to step 1.

Ellad B. Tadmor (University of Minnesota)

Why KIM?

8

‣ The KIM effort addresses key problems faced by molecular modelers:

Problem 2: It is very difficult to port IMs between simulation codes that have
different program architectures and may be written in different
computer languages.

KIM API

Problem 3: A great deal of researcher time is spent redeveloping methods for
computing complex material properties (e.g. melting temperature, thermal
conductivity, phonon spectra, entropic properties, phase diagrams, etc.).

KIM Tests

Problem 1: It is currently very difficult or even impossible for a researcher to
reproduce published results obtained using molecular simulations with a
given IM or to use the same IM in a different study.

Archival Storage DOIs

Ellad B. Tadmor (University of Minnesota)

Why KIM?

9

‣ The KIM effort addresses key problems faced by molecular modelers:

Problem 4: Programming errors in IM implementations can lead to systematic errors
that can go unnoticed, or result in strange behavior that can be extremely
difficult and time-consuming to debug.

KIM Verification Checks

Problem 5: Researchers do not have a central location to exchange information
about specific IMs and share analysis and visualization tools that they
have developed related to molecular simulation.

KIM Model Pages Central Discussion Forum

Problem 6: Researchers do not have easy and reliable access to predictions of an IM for
certain properties needed for problem setup or analysis, e.g. an equilibrium
lattice constant is required to build a crystal or a bulk cohesive energy is
required in a surface energy calculation.

KIM Queries

Ellad B. Tadmor (University of Minnesota)

Knowledgebase of Interatomic Models

10

The Open Knowledgebase of Interatomic Models (KIM) is a cyberinfrastructure
funded by the U.S. National Science Foundation (NSF) with the following features:

• Standardized testing framework for archived IMs including their predictions for
material properties and checks on their coding integrity.

• Rigorous transferability and uncertainty estimation for KIM IMs based on machine
learning approaches to select IMs for target application and providing error
bounds on their predictions (under development).

Funding: NSF CDI (2009-2014); NSF CDS&E (2014-2018); NSF CMMT (2019-)

• Curated repository of interatomic models (IMs) (potentials and force fields) with
comprehensive provenance and version control.

• Application Programming Interface (API) standards connecting molecular
simulation codes (“simulators”) with IMs.

• Source and binary distribution framework for easy installation and use of the KIM
API and KIM IMs with conforming simulators.

Ellad B. Tadmor (University of Minnesota)

Types of KIM Models

11

‣ KIM has two types of Models:

KIM Portable Model (PM): An autonomous interatomic model that works seamlessly
with any simulation code that conforms to KIM standards.

- A PM is independent computer implementation of an interatomic model written in
one of the languages supported by KIM (C, C++, Fortran).

KIM PM
atomic

configuration
energy and

its derivatives

computer implementation + parameters

KIM Simulator Model (SM): An interatomic model that only works with a single
simulation code (simulator) in which it is implemented.

- An SM is a package curated on OpenKIM that includes all the necessary parameter
files, simulator input commands, and metadata (supported species, units, etc.) needed
to run model in its native simulator.

Ellad B. Tadmor (University of Minnesota)

KIM API — Portable Models

12

‣ KIM Models employ the KIM Application Programming Interface (API).

Portable Models (PMs) conform to the KIM API Portable Model Interface (PMI)

• Stand-alone simulation computer program
(MD, MC, lattice dynamics, multiscale, etc.)

• Can be written in any language supported
by the API (Fortran, C, C++, Python)

Any Simulator
(simulation code)

• Autonomous code that given a set of atomic
positions, species, ... computes energy, forces, ...

• Can be written in any language supported by
the API (Fortran, C, C++)

OpenKIM Repository

MO_800509458712_002

MO_418978237058_005

MO_942551040047_005

…

PM Collection
Routine requiring
energy and forces
of atomic config

standardized
packed

data objects

MO_942551040047_005

Ellad B. Tadmor (University of Minnesota)

‣ The KIM API v2 is designed with simplicity in mind and adheres to API best practices:

• Implementation hiding (pimpl idiom)
• Loose coupling
• Minimal-completness

• Ease of use (discoverable,
consistent, orthogonal)

• Static factory methods

• Use of namespaces
• Const-correctness
• Avoid abbreviations

KIM API — Simulator Models

13

‣ KIM Models employ the KIM Application Programming Interface (API).

Simulator Models (SMs) conform to the KIM API Simulator Model Interface (SMI)

Simulator
(simulation code)

internal
interatomic model

…

OpenKIM Repository

SM_667696763561_000

SM_566399258279_000

SM_666183636896_000

SM Collection
•param files
•setup instr.
•species, etc.

SM_666183636896_000

Ellad B. Tadmor (University of Minnesota)

KIM Testing Framework

14

‣ All KIM IMs are subjected to Verification Checks (VCs) for coding integrity

Species supported as stated;
Unit conversion handled
correctly;
Domain decomposition
handled correctly;
...

Numerical derivative check of
forces, virial, hessian, ...;

• Translational and
rotational invariance;
...

Continuity, smooth cutoff;

• Inversion symmetry;
Coding issues: memory
leaks, optimization
dependence, ...
...

Mandatory Consistency Informational

‣ All KIM IMs are run against all compatible KIM Tests to compute material properties:

Bulk
- cohesive energy
- elastic constants
- lattice constants
- phonon spectrum
- thermal conductivity
- thermal expansion
- ..

Wall
- antiphase boundary
- gamma surface
- grain boundary structure
- stacking fault energy
- surface energy
- surface structure
- ...

Line
- dislocation core structure
- dislocation core energy
- Peierls barrier
- ...
Point
- vacancy formation energy
- vacancy migration barrier

Ellad B. Tadmor (University of Minnesota)

Models on openkim.org

15

Ellad B. Tadmor (University of Minnesota)

Models on openkim.org

16

Ellad B. Tadmor (University of Minnesota)

Models on openkim.org

17

Ellad B. Tadmor (University of Minnesota)

Models on openkim.org

18

Further down the model page for
EAM_NN_Johnson_1988_Cu__MO_887933271505_002

Ellad B. Tadmor (University of Minnesota)

Models on openkim.org

19

Further down the model page for
EAM_NN_Johnson_1988_Cu__MO_887933271505_002

Ellad B. Tadmor (University of Minnesota)

Models on openkim.org

20

Ellad B. Tadmor (University of Minnesota)

KIM-Compliant Codes

21

Ellad B. Tadmor (University of Minnesota)

Using KIM IMs with ASE

22

/

inde� Ň mod�Ѵev Ň gi|Ѵab Ň page vo�rce

KIM

q Note

Thiv package req�irev |he KIM API packageķ �hich iv hov|ed on Gi|H�b and a�aiѴabѴe
|hro�gh man� binar� package managervĺ See openkimĺorgņkimŊapi for inv|aѴѴaঞon opঞonvĺ

q Note

Thiv package req�irev |he kilr� p�|hon packageķ �hich iv hov|ed on Gi|H�b and aѴvo made
a�aiѴabѴe |hro�gh P�PIĺ

OvervieY

Thiv package con|ainv a caѴc�Ѵa|or in|erface |ha| aѴѴo�v one |o eaviѴ� �ve an� po|enঞaѴ archi�ed
in Open Kno�Ѵedgebave of In|era|omic ModeѴv ŐOpenKIMő |hro�gh ASEĺ OpenKIM iv an NSFŊ
f�nded projec| aimed a| pro�iding eav� accevv |o v|andardi�ed impѴemen|aঞonv of cѴavvicaѴ
in|era|omic po|enঞaѴv |ha| can be �ved �i|h a �arie|� of moѴec�Ѵar vim�Ѵaঞon codevĺ

If �o� ha�enĽ| done vo aѴread�ķ �o�ĽѴѴ need |o inv|aѴѴ |he KIM AppѴicaঞon Programming
In|erface ŐAPIő and |he kimp� p�|hon package in order |o �ve |hiv caѴc�Ѵa|orĺ The vimpѴev| �a�
|o inv|aѴѴ |he former iv |o �ve �o�r operaঞng v�v|emĽv naঞ�e package manager |o inv|aѴѴ |he
ļopenkimŊmodeѴvĽ packageķ �hich �iѴѴ inv|aѴѴ bo|h |he KIM API and a vnapvho| of binariev of aѴѴ
of |he c�rren| modeѴv ho�ved in |he OpenKIM repovi|or� Ővee
h�pvĹņņopenkimĺorgņdocņ�vageņob|ainingŊmodeѴv for inv|r�cঞonvőĺ O|her�iveķ |he ļkimŊapiĽ
package can be inv|aѴѴed b� i|veѴfķ �hich �iѴѴ no| incѴ�de an� modeѴv be�ond |he e�ampѴev
b�ndѴed �i|h |he KIM APIĺ The kimp� package can be inv|aѴѴed from P�PI �ving pipĹ
SiS iQVWall --XVeU kimS\ ĺ

Av an e�ampѴeķ v�ppove �e �an| |o kno� |he po|enঞaѴ energ� predic|ed b� |he e�ampѴe
modeѴ ľe�ōmodeѴōArōPōMorveōƏƕCĿ for an FCC argon Ѵaমce a| a Ѵaমce vpacing of ƔĺƑƔ
Angv|romvĺ Thiv can be accompѴivhed in a manner vimiѴar |o ho� mov| o|her ASE caѴc�Ѵa|orv
are �vedķ �here |he name of |he KIM modeѴ iv pavved av an arg�men|Ĺ

‣ The latest release of ASE provides
full support for using KIM IMs

This includes:

• Easy installation from source,
binary or Conda

• Full support for KIM Portable
Models (PMs) and Simulator Models
(SMs) through a KIM Calculator

• Ability to query IM property
predictions from openkim.org to be
used in setting up and analyzing ASE
simulations

See details at

https://wiki.fysik.dtu.dk/ase/dev/ase/calculators/kim.html

Ellad B. Tadmor (University of Minnesota)

Installing ASE with KIM Support

23

‣ Using ASE with KIM requires installation of the KIM API, KIM models library, and KIM queries.

Install 'kim-api' and 'openkim-models' via package manager, e.g. brew, apt-get  
(see https://openkim.org/kim-api/)  

$ pip install --user kimpy (requires gcc)
$ pip install git+https://github.com/openkim/kim-python-utils (optional for queries)
$ pip install git+https://gitlab.com/ase/ase.git

Direct Binary Installation

Installation using Conda

$ conda create --name ase && conda activate ase (create Conda environment)
$ conda install -c conda-forge kim-api openkim-models kimpy (install KIM)
$ conda install -c conda-forge matplotlib (matplotlib required by ASE)
$ pip install git+https://gitlab.com/ase/ase.git (install ASE)
$ pip install git+https://github.com/openkim/kim-python-utils (optional for queries)

https://p

Ellad B. Tadmor (University of Minnesota)

Using a KIM IM in ASE

24

‣ KIM IMs are used in ASE using the KIM Calculator.

Load the KIM calculator

Select KIM model
and attach to atomic
configuration

Ellad B. Tadmor (University of Minnesota)

Using a KIM IM in ASE

25

‣ Running this gives:

(ase) root@6ddb06015b8e:~/ase_workshop_examples# python ex1.py
Computed cohesive energy of 3.359 eV/atom (experiment: 3.39 eV/atom)
Computed pressure of -1049.6852893566931 MPa
(ase) root@6ddb06015b8e:~/ase_workshop_examples#

‣ KIM provides full citation information including DOIs for all models:

Scientific citation

Code used in the
simulation

KIM infrastructure

Full citation in
BibTex format

Ellad B. Tadmor (University of Minnesota)

KIM Queries

26

‣ You may have noticed in the previous calculation that the pressure was far from zero:

(ase) root@6ddb06015b8e:~/ase_workshop_examples# python ex1.py
Computed cohesive energy of 3.359 eV/atom (experiment: 3.39 eV/atom)
Computed pressure of -1049.6852893566931 MPa
(ase) root@6ddb06015b8e:~/ase_workshop_examples#

This is because the lattice parameter used (a0=4.05 Å) is not the equilibrium lattice
constant predicted by the Ercolessi-Adams potential for fcc Al.

‣ A mechanism is provided for querying properties (like a0) from openkim.org:

model = "EAM_Dynamo_ErcolessiAdams_1994_Al__MO_123629422045_005"

Perform query to get lattice constant for this model
a0 = get_lattice_constant_cubic([model], ["fcc"], ["Al"], ["angstrom"])[0]

This sets a0=4.032082033157349 (obtained from openkim.org) which gives:

Computed cohesive energy of 3.360 eV/atom (experiment: 3.39 eV/atom)
Computed pressure of -0.0013119052397128333 MPa

Ellad B. Tadmor (University of Minnesota)

KIM Queries for Robust Computations

27

‣ KIM queries provide a powerful mechanism for writing ASE scripts that work for any
interatomic model without having to repeat complex and expensive computations.

The following algorithm will work robustly for any interatomic model

• Query openkim.org to obtain the following properties for the fcc structure:
- a0 : equilibrium lattice constant
- α : thermal expansion coefficient
- B : bulk modulus

EXAMPLE: MD simulation in the NPT ensemble of an fcc crystal

• Construct fcc crystal for the scaled lattice constant: a = a0(1 + ↵T)
<latexit sha1_base64="s0GgW1h2QU7N216uyAO2GDhCGZc=">AAACFHicbZA7SwNBFIVnfcb4iqYRbAZFUISwGxFtBNHGUsGokIRwd3JjBmdnl5m7YlwC/gpbW22t7cTWXvAX+CucJBa+DgwczrmXuXxhoqQl33/zhoZHRsfGcxP5yanpmdnC3PyJjVMjsCJiFZuzECwqqbFCkhSeJQYhChWehhf7vf70Eo2VsT6mToL1CM61bEkB5KJGoQh8h0PDXw3Wa6CSNvDjtUZh2S/5ffG/Jvgyy7sL1+8TN497h43CR60ZizRCTUKBtdXAT6iegSEpFHbztdRiAuICzrHqrIYIbT3rH9/lKy5p8lZs3NPE++n3jQwiaztR6CYjoLb93fXC/7pqSq3teiZ1khJqMfiolSpOMe+R4E1pUJDqOAPCSHcrF20wIMjxytf6i5mOaUCqjM0S4VXXwQl+o/hrTsqlYKO0eeQobbOBcmyRLbFVFrAttssO2CGrMME67I7dswfv1nvynr2XweiQ97VTZD/kvX4Co0GgNw==</latexit>

• Equilibrate until the cell volume fluctuations converge to the expected value
from statistical mechanics:

�Vp
V

=

r
KBT

B
<latexit sha1_base64="6mDKvxhFos7ia2lKgS3Dc8Wpy4Y=">AAACOHicbZDNbhMxFIU9LYUQWhpAYsPGokLqKppp1aYbpCplgcQmSM2PlIkij3MnteLxTO07iMjyM/QJuoZn6LZbeAB27Kqy5AlwMl1AypUsHZ17jmx/SSGFwTD8EaytP9h4+Kj2uP5kc+vpduPZ857JS82hy3OZ60HCDEihoIsCJQwKDSxLJPST2cli3/8E2ohcneK8gFHGpkqkgjP01rjRilPNuI3fgURGe87G5lyj7TlH39JKV4kPYxvrjLbdqbNt58aNnbAZLofeF9Gd2Dk+LC6+fO287Iwbv+JJzssMFHLJjBlGYYEjyzQKLsHV49JAwfiMTWHopWIZmJFdftDRN96Z0DTX/iikS/fvhmWZMfMs8cmM4ZlZ3S3M/+2GJaZHIytUUSIoXl2UlpJiThe06ERo4CjnXjCuhX8r5WfM80DPtB4vi1blWNHcg0kT4fMCTrSK4r7o7TWj/ebBR0/piFRTI6/Ia7JLItIix+Q96ZAu4eSSXJNv5HtwFfwMboLbKroW3HVekH8m+P0H6w6xvQ==</latexit>

• Proceed with simulation...

Ellad B. Tadmor (University of Minnesota)

The ASE calculator API and the OpenKIM API

28

Atoms

positions
atomic numbers

etc.

system size
boundary conditions

Calculator (Interatomic Model)

Two main tasks:

1. Make neighbor lists
(positions, boundary conditions)

2. Implement the model

Configuration

Forces, energy

Dynamics
e.g. energy minimization
or molecular dynamics

(many algorithms)

C
on

fig
ur

at
io

n,

fo
rc

es
,

en
er

gy

N
ew

co

nf
ig

ur
at

io
n
ASE

calculator
API

ASE
dynamics

API

Ellad B. Tadmor (University of Minnesota)

The ASE calculator API and the OpenKIM API

29

Atoms

positions
atomic numbers

etc.

system size
boundary conditions

Configuration

Forces, energy

Dynamics
e.g. energy minimization
or molecular dynamics

(many algorithms)

C
on

fig
ur

at
io

n,

fo
rc

es
,

en
er

gy

N
ew

co

nf
ig

ur
at

io
n
ASE

calculator
API

ASE
dynamics

API

OpenKIM Calculator (mainly Python)

Makes neighbor list from atomic positions
and boundary conditions.

Collects partial data to energies, forces,
stresses etc

OpenKIM Model (C, C++ or Fortran)

Calculates energies and derivatives based
on each atom’s local environment.

A
to

m
ic

 n
um

be
rs

,
R
el

at
iv

e
po

si
ti
on

s

En
er

gi
es

,
de

ri
va

ti
ve

s

OpenKIM
API

Ellad B. Tadmor (University of Minnesota)

At least two OpenKIM calculators in ASE

30

KIM (multiple calculators)

• An ASE calculator
• Supports both Portable Models and

Simulator Models (if LAMMPS installed)
• Easy to use for serial simulations

–

• Part of ASE, pure Python on top of
kimpy

ASAP

• An ASE calculator
• Supports Portable Models

• An ASE extension for large-scale
parallel simulations
– Domain decomposition

• Separate project: C++, Python

Ellad B. Tadmor (University of Minnesota)

Massively parallel molecular dynamics: Domain decomposition

31

Simulation with millions of atoms.

Ellad B. Tadmor (University of Minnesota)

Asap must mess with ASE objects!

32

ParallelAtoms

positions
atomic numbers, etc.

Real and ghost atoms
(ghosts are invisible

from ASE side)

Configuration

Dynamics
e.g. energy minimization
or molecular dynamics

(many algorithms)

C
on

fig
ur

at
io

n,

fo
rc

es
,

en
er

gy

N
ew

co

nf
ig

ur
at

io
n

A
to

m
ic

 n
um

be
rs

,
R
el

at
iv

e
po

si
ti
on

s

En
er

gi
es

,
de

ri
va

ti
ve

s

Forces, energy

Sync ghost atoms

Migrate real atoms

ASE
dynamics

API

OpenKIM
API

ASAP Calculator

Makes neighbor list from atomic positions
and boundary conditions.

Collects partial data to energies, forces,
stresses etc

OpenKIM Model (C, C++ or Fortran)

Calculates energies and derivatives based
on each atom’s local environment.

Ellad B. Tadmor (University of Minnesota)

Large-scale molecular dynamics

33

Dislocation motion in
polycrystalline copper

100 million atoms.
Atoms in FCC structure
are hidden in video

Ran on 100 cores in
2003.

Schiøtz and Jacobsen,
Science 301, 135 (2003).

Ellad B. Tadmor (University of Minnesota)

Conclusions

The Knowledgebase of Interatomic Models (KIM) provides:

‣ A curated repository of Interatomic Models (IMs) with version control and
DOIs for easy referencing.

‣ A standard API so molecular simulation codes can use these IMs.

‣ A set of verification and evaluation tests to aid you in selecting an
appropriate IM.

‣ Easily accessible from ASE through ase.calculators.kim.KIM() for serial
simulations and from Asap through asap3.OpenKIMcalculator() for massively
parallel simulations.

34

OpenKIM.org
"All models are wrong, but
some are useful."

George E. P. Box

