Theory and computation of electrocatalytic thermodynamics and kinetics: The grand canonical approach

Marko M. Melander

Computational Catalysis Department of Chemistry University of Jyväskylä marko.m.melander@jyu.fi

20.11.2019

Electrocatalysis?

- 2 The grand canonical approach: Thermodynamics
- 3 Grand canonical kinetics
- Why is this stuff presented at an ASE workshop?

Why electrochemistry and electrocatalysis?

Controlling redox reaction thermodynamics and kinetics with the Figure from Zhi Wei Seh et.al. Science 13 Jan 2017: Vol. 355, Issue 6321, eaad4998

Marko M. Melander

GC approach to electrocatalysis

The electrochemical interface and experiments

• Experiments probe chemistry at electrochemical, electrified solid-liquid interface

- The thermodynamic state is unambiguously determined by the independent thermodynamic variables: T, V, and P/c (Helmholtz/Gibbs) or T, V, and μ (Landau or Grand canonical) → Thermodynamics and kinetics as a function of the electrode potential in the presence of electrolytes
- Quantum mechanics, thermodynamics, rate theory ...

Marko M. Melander

GC approach to electrocatalysis

Motivation and need: Electrocatalytic reactions

- Important reactions especially for energy conversion and storage: ORR, OER, HER, CO2RR...= PCET Reactions
- Depending on the reaction and catalyst, both coupled and decoupled processes possible

- Rate and thermodynamics depend on the electrode potential
- Goal: Theory and computational methods to study PCET reactions at fixed potentials including tunneling, non-adiabaticity, pH... → extend common DFT and rate theory

Electrocatalysis?

2 The grand canonical approach: Thermodynamics

3 Grand canonical kinetics

Why is this stuff presented at an ASE workshop?

DFT thermodynamics for electrons and nuclei

- Normal DFT: $U(S, V, N)[\rho]$, energy operator $\hat{E} = \hat{H}$
- Thermal DFT: Legendre transform to Helmholtz $\rightarrow A(T, V, N)[\hat{\rho}]$, a thermal ensemble of states using density operator $\hat{\rho}$, $\hat{E} = \hat{H} T\hat{S}$
- Thermal GC-DFT: Further Legendre transform to open systems with fixed chemical potentials: Ω(T, V, μ)[ρ̂_{GC}], Ê = Ĥ - TŜ - μÑ
- Multicomponent DFT: treat both electron and nuclear densities for a fully quantum theory, *E*[*ρ*(**r**), {*N*(**R**)}]
- By minimizing the energy functional one obtains thermodynamic quantities
- Note: In experiments only independent thermodynamic variables can be controlled, not (local) temperature, surface charges, concentrations/pH, coverages etc. → only controllable parameters should be included in the theoretical treatment

GCE for electrochemistry

- For large enough systems all ensembles are equally useful but for simulating small systems the choice of ensemble is critical
- In an electrochemical setup both the electronic and nuclear/ionic chemical potentials are fixed
- Practical solution: Fix electron and electrolyte chemical potentials to mimic experiments at fixed electrode potential and electrolyte concentration
- Free energy from a single calculation!
- General description for thermodynamics and kinetics

Grand canonical electron/electrolyte DFT

General framework: Multicomponent grand canonical DFT¹

$$\Omega(T, V, \tilde{\mu}_{\pm}, \tilde{\mu}_n) \equiv \operatorname{Tr}\left[\hat{\rho}\hat{\Omega}\right] \equiv \Omega[\hat{\rho}]$$
$$= \sum_{i} p_i \left[\beta \ln p_i + \langle \Psi_i | \hat{H}_{tot} - \mu_{\pm}^{N}(\hat{N}_{+} + \hat{N}_{-}) - \tilde{\mu}_n \hat{N}_n | \Psi_i \rangle\right]$$

$$\hat{\Omega} = \hat{H}_{tot} - T\hat{S}_{Nn} - \sum_{i} \tilde{\mu}_{i}\hat{N}_{i}$$
$$\hat{\rho}^{GC} = \frac{\exp\left[-\beta(\hat{H}_{tot} - \sum_{i} \tilde{\mu}_{i}\hat{N}_{i})\right]}{\operatorname{Tr}\left[\exp\left[-\beta(\hat{H}_{tot} - \sum_{i} \tilde{\mu}_{i}\hat{N}_{i})\right]\right]}$$

• Fully quantum nuclear and electronic densities, nonadiabatic effects...

¹M. Melander, M. Kuisma, T. Christensen, K. Honkala, J. Chem. Phys. 150, 041706 (2019)

Practical electron/electrolyte grand canonical DFT

- A systematic coarse-graining can be performed to obtain
 - Quantum dynamics (GC-PIMD, GC-RPMD)
 - Dynamics with classical nuclei (GC-AIMD)
 - Selected nuclei treated with QM: The NEO-DFT approach
 - Classical electrolyte with well-defined ions and solvent (QM/MM or classical DFT with atom/molecular densities)
 - Continuum models (dielectric + mPB)

Implemented modified Poisson-Boltzmann models in GPAW.

$$\begin{split} \Omega &= -\frac{1}{2} \sum_{i} \langle \psi_{i} | \nabla^{2} | \psi_{i} \rangle + \int d\mathbf{r} \epsilon_{xc}[n(\mathbf{r})] n(\mathbf{r}) \\ &+ \frac{1}{2} \int d\mathbf{r} \phi(\mathbf{r})[n(\mathbf{r}) + \rho_{\pm}(\mathbf{r}) - N(\mathbf{r})] - \int d\mathbf{r} \tilde{\mu}_{n} n(\mathbf{r}) \\ &- \int d\mathbf{r} \mu_{\pm} \rho_{\pm}(\mathbf{r}) - TS_{ions} + G_{chem} \end{split}$$

 General electron/ion Kohn-Sham-Mermin in dielectric electrolyte environment

Grand canonical Electronic DFT: Potentiostat

- Extended Lagrangian for fixed potential calculations, similar to thermostats or barostats
- Fictitious dynamics for the number of electrons

$$\dot{n}_e = rac{P_{n_e}}{M_e}$$
 and $\dot{P}_{n_e} = F_e = U - U_0$

- Both n_e and U fluctuate around their (set) equilibrium values \rightarrow proper ensemble averaging
- Available ASE thanks to Mikael Kuisma

Bonnet, PRL 109, 266101 (2012)

Grand canonical Electronic DFT: Iterative

 Naive implementation is easy but efficient recycling of wave functions / density is needed for real situations

(Stolen from G. Kastlunger, J. Phys. Chem. C 2018, 122, 24, 12771)

Simple GC-DFT calculator

1 2

3 4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

```
class GCDFT (Calculator) :
    implemented_properties = ['energy', 'forces', 'grand_energy']
    def init (self, calc, atoms, charge = None, U=0., Uref = -4.44,
        new calculation = False, optimizer setups = { 'method': 'secant', 'maxstep':0.2,
        'tolerance':0.01, 'steps':20, 'minimum':-4, 'maximum':4, 'initial step':0.01}):
        < INITIALIZE CALCULATOR AND SET REFERENCE OUANTITIES >
    def calculate(self, atoms, properties, system changes):
        def fdgc(c):
        ''' Finite-difference grand canonical calculator. Takes charge (c) and returns
        difference from chosen potential '''
            self.calc.set(charge = c)
            self.atoms.set calculator(self.calc)
            self.E = self.atoms.get potential energy()
            self.Ef = self.calc.get fermi level()
            dII = -self Ef - self IIref - self II
            return du
        if self.opt['method'] == 'secant':
            self.opt charge = self.secant(fdgc)
        else: ...
    def secant(self, f):
        self.dU0 = self.U0 - self.U
        while abs(self.dU1) > self.opt['tolerance'] and iteration_counter < self.opt['steps</pre>
            denominator = float(self.dU1 - self.dU0) / (self.c1 - self.c0)
            c = self.c1 - float(self.dU1)/denominator
       self.c0 = copy.copy(self.c1)
        self c1 = c
       self.charge step = self.c1 - self.c0
       self.dU0 = self.dU1.copy()
       self.dU1 = f(self.c1)
```

Handling charged slabs: The electrostatics

- The GC-EDFT calculations lead to partly periodic charged systems
- Also one needs the absolute electrode potential at various charge states: one point should be the same for all situations
- Depends on the DFT code but Dirichlet boundary conditions (fixed value) for Poisson equation is a good
- Charged systems either neutralized with Poisson-Boltzmann or jellium or use "metallic or tin-foil" boundary conditions

The absolute electrode potential?

There are no "absolute electrode potentials", only single electrode potentials

$$E(abs) = E(red) + K = \delta \phi_M^S - \mu_e^M + K$$

K is a constant depending on the reference scale and a Galvani potential difference $\delta \phi_M^S$ between the electrode and solvent and μ_e the chemical potential of electrons, i.e. the Fermi-level

- Different references need to be used for different models! For Poisson-Boltzmann the solvated "free electron", $\mathcal{K} = \mu_e^S$ and $E(abs)^{PB} = -\tilde{\mu}_e^M$.
- On experimental scale: $\Delta E(SHE) = E(abs)^{PB} + \Delta \chi_s E_{vac}^{SHE}$

Electrocatalysis?

2 The grand canonical approach: Thermodynamics

3 Grand canonical kinetics

Why is this stuff presented at an ASE workshop?

Theoretical framework³

- The theory is independent of the type of reaction: ET, PT, PCET, non-adiabatic, tunneling, adiabatic, solvent-controlled...
- For thermal reactions Miller's canonical rate theory² is extended to GCE

$$k(T, V, \mu)\Xi_{0} = \sum_{N} \exp[\beta \mu N] \int dE \exp[-\beta E] \underbrace{P(E)}_{\substack{\text{microcanonical}\\ \text{canonical}}}_{grandcanonical}$$

Miller's theory is generally valid for all thermal rate equations

²W.H. Miller, J. Phys. Chem. A 102, 793 (1998)

³M. M. Melander, submitted, preprint on ChemRxiv

How is the GCE rate theory different from previous approaches?

- All rate theories derived the for canonical ensemble can be extended to GCE
- Does not rely on model Hamiltonians and can be used with whichever first principles method
- Electrode potential is self-consistently included to capture double-layer, electronic structre ... effects
- Non-adiabatic reactions do not rely on an orbital description or the DOS which are non-unitary:

$$k(E) \propto \int_{-\infty}^{\infty} d\epsilon |H_{ab}(\epsilon,\epsilon_0)|^2 f(\epsilon-E) imes \exp\left[-eta rac{(\lambda+e_0(E^0-E)-\epsilon_0)^2}{4\lambda}
ight]$$

For electron in $b, \epsilon \to a, \epsilon_0$ and $H_{ab}(\epsilon, \epsilon_0) = \langle \psi_a^{\epsilon_0} | \hat{H} | \psi_b^{\epsilon} \rangle$

Adiabatic and non-adiabatic reactions

- Adiabatic: only the ground state electronic/vibronic potential energy surface is needed
- Non-adiabatic: transitions between ground and excited electronic/vibronic states
- Choice of the reaction coordinate lead to different theoretical and computational pictures: solvent/surrounding reorganization (Fermi-golden rule) or e.g. H-bond distances (NEB)?

Electronically adiabatic reactions

 Assume classical nuclei and ignore re-crossing reactions: The GCE-TST

$$k(T, V, \mu) \equiv_I = \frac{k_B T}{h} \equiv^{\dagger} \rightarrow k(T, V, \mu) = \frac{k_B T}{h} \exp\left[-\beta \Delta \Omega^{\ddagger}\right]$$

At this limit normal tools such NEB and DIMER in ASE can be used directly

• Account for quantum nuclei but ignore back-propagating reactions: The GCE-TST with a correction

$$k(T, V, \mu) \equiv_I = \langle \kappa \rangle_{\mu} \frac{k_B T}{h} \equiv^{\dagger}$$

Effective crossing correction using on GC ground state: WKB-based approximations (analytical or numerical), (truncated) semi-classical TST ...

Diabatic approach for adiabatic reactions

- Traditionally, (canonical) electrochemical rate equations are based on diabatic states: empirical valence bond theory (EVB)
- It turns out that GC-EVB can be established. In the simplest case, a Marcus-like rate is obtained

$$k = \frac{\kappa}{\sqrt{4k_BT\Lambda}} \exp\left[-\beta \frac{(\Delta\Omega_{FI} + \Lambda)^2}{4\Lambda}\right]$$

Fixed potential diabatic states using GC-constrained DFT⁴

⁴M. Melander et.al. JCTC. 2016, 12, 11, 5367

Predictions from GC-EVB theory

 Generalized free energy relationships using BEP and Tafel slopes Tafel:

$$k(U) \propto \exp\{-\alpha \times (U - U_0)\}\exp\{-\Delta G^{\ddagger}(U_0)\}$$

General:

$$\alpha \propto \frac{\partial \ln k}{\partial U} = -\frac{\partial \ln k}{\partial \Delta \Omega} \frac{\partial \Delta \Omega}{\partial \tilde{\mu}_n} \frac{\partial \tilde{\mu}_n}{\partial U} = -\gamma \Delta \Omega'$$
$$\gamma = \frac{1}{2} \left[1 + \frac{\Delta \Omega}{\Lambda} \right] \quad \text{and} \quad \Delta \Omega' \sim \pm \text{constant}$$

The GC-EVB theory agrees nicely with GC-DFT results⁵

⁵Lindgren, Kastlunger, Peterson, arXiv:1903.09903

Marko M. Melander

GC approach to electrocatalysis

GC-EVB in action: Volmer on Au at equilibrium

- Reorganization coordinate: Water rotates and diffuses from the surface
- Reorganization energy: $\Lambda\approx 5.5$ eV, much larger than assumed for model Hamiltonian^6
- Effective coupling constant: $\Omega_{\textit{IF}}\approx$ 1.1 eV, much smaller than assumed for model Hamiltonian^6
- Smooth charge transfer and large coupling constant indicate electronic adiabaticity

⁶Lam, Soudackov,Hammes-Schiffer, JPCL 2019, 10, 18, 5312

Non-adiabatic reactions

- Sudden jumps in electronic states along the "reaction coordinate"
- Only jumps conserving the particle number are allowed
- The solvent/surrounding reorganize to enable electron/proton tunneling at a given energy
- Rate given by Fermi Golden Rule-like expression (for high-T, slow nuclei)

$$egin{aligned} &k_{GCE-NATST} pprox \sum_{N} p_{iN} rac{V_{N,if}^2}{\hbar\sqrt{4\pi k_B T \lambda}} \exp \left[-rac{(\Delta E_{fi}^N + \lambda)^2}{4k_B T \lambda}
ight] \ &pprox rac{\langle V_{if}^2
angle_{\mu}}{\hbar\sqrt{4\pi k_B T \Lambda}} \exp \left[-rac{(\Delta E_{fi}^\mu + \Lambda)^2}{4k_B T \Lambda}
ight] \end{aligned}$$

- The latter form can be used for interpolating between adiabatic and non-adiabatic limits
- All quantities can be computed using (GC-)cDFT

Non-adiabatic reactions: Why and when to bother?

- Small coupling constants and/or sudden changes in 1) charge or 2) dipole moment indicate non-adiabaticity⁷
- Volmer on Au: Model Hamiltonians indicate electronic adiabiticity and vibronic non-adiabaticity⁸ and explain experiments⁹
- Non-adiabatic: Diabatic (Marcus) \approx adiabatic(NEB) barrier
- Long-distance electron transfer

⁷Sirjoosingh and Hammes-Schiffer, JPCA, 2011, 115, 2367

⁸Lam, Soudackov,Hammes-Schiffer, JPCL 2019, 10, 18, 5312

Sakaushi, Faraday Discuss., 2019

Electrocatalysis?

2 The grand canonical approach: Thermodynamics

3 Grand canonical kinetics

Why is this stuff presented at an ASE workshop?

- (Almost) any solid-state calculator supported by ASE can be used for performing electronically GC-DFT calculations
- Using ASE as the driver, both adiabatic and non-adiabatic calculations can be performed with a suitable DFT code
- Many of the standard minimum energy pathway and thermochemistry modules can be directly utilized
- Constant-potential molecular dynamics is straightforward
- Vibronic wave functions and overlaps needed for "reorganization energy" and matrix elements may be accessed from Huang-Rhys factors in ASE (NA-ET and PCET are kind of Franck-Condon transitions)

Acknowledgements

- Thanks to Mikael Kuisma (JYU), Daniel Karlsson (JYU) and Thorbjørn Christensen (AU) on the mPB work
- Alexander Soudackov, Sharon Hammes-Schiffer, Zach Goldsmith, and Yang-Choi Lam at Yale on helping with the details of the rate theory formulation

