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Proposal

We should have some standardized form for 
scripts.



  

Outline
● What is the problem
● Our suggestion

– How should it work in practice?
– Examples
– Design choices



  

Normal ASE workflow
To relax a structure I would probably 
start with a script like this.

I would gradually expand my script:
● Save each relaxation step
● Relax cell: UnitCellFilter() 
● Etc…
In time the script would have grown 
significantly.



  

Relax Phonons Bandstructure ...

These scripts become my recipes to 
calculate properties



  

The big picture

Quantum Espresso

VASP

FHI-aims

...
ASEASEGPAW

 DFT codes

“Pile of scripts” 
- Adam Jackson



  

Waste of student time?
● Many (most, all?) students go through this process

– Writing a script, improving on it
– Doing the same mistakes
– Implementing variants the same good ideas
– Converge to (mostly) the same script

● Learning experience?
– Some important lessons in this process
– Some not so important
– Some definitely a waste of time



  

Using new modules

Developer Module Student Script

Tutorials are often solving an artificial problem, scripts solve a real world problem. 
Do we need a place for those?



  

Anecdote
● AIMS workshop, ASE tutorial Barcelona 2019
● “Are there any predefined scripts for relaxing a 

structure?”
● Do we need a repository and some standardized 

form for scripts? Could we even agree on 
something?



  

The big picture

Quantum Espresso

VASP

FHI-aims

...
ASEASEGPAW

 DFT codes

ASR

What should such a package be/do/not do?



  

OUR SUGGESTION
(BASED ON OUR NEEDS,

UP FOR DISCUSSION)



  

What is a recipe?
● A annotated function that 

returns its results as a 
dictionary.

● Results are saved to a json file.
● The @command decorator takes 

care of everything.
● In particular, gives the 

function a command line 
interface.

● The ASR package is just a 
collection of scripts 
containing recipes.



  

Command line interface
$ python3 -m asr.relax --help
Usage: python -m asr.relax [OPTIONS]

  This function relaxes a structure

Options:
  --fmax FLOAT  Minimum force tolerance.  [default: 0.01]
  -h, --help    Show this message and exit.



  

Full disclosure:
The actual relax recipe



  

Example: Relax silver
$ ase build Ag unrelaxed.json --crystal-structure fcc

$ python3 -m asr.relax --calculator "{'name':'emt'}"
Running asr.relax(calculator={'name': 'emt'}, d3=False,
fixcell=False, allow_symmetry_breaking=False)

$ ls
relax.log  relax.traj  results-asr.relax.json  
structure.json  unrelaxed.json

$ ase build Ag unrelaxed.json --crystal-structure fcc

$ python3 -m asr.relax --calculator "{'name':'emt'}"
Running asr.relax(calculator={'name': 'emt'}, d3=False,
fixcell=False, allow_symmetry_breaking=False)

$ ls
relax.log  relax.traj  results-asr.relax.json  
structure.json  unrelaxed.json



  

Result files
$ cat results-asr.relax.json
{
 "energy": -0.0003663968564069364,
 "__params__": {
  "calculator": {"name": "emt"},
  "d3": false,
  "fixcell": false,
  "allow_symmetry_breaking": false
 },
 "__versions__": {
  "asr": "19.8.20-8ad12500add3f21047dc2b5a91cecbd3daa07d39",
  "ase": "3.19.0b1-da3288338c6896a9a5b15322d303471d826f7486",
 }
}
 

$ cat results-asr.relax.json
{
 "energy": -0.0003663968564069364,
 "__params__": {
  "calculator": {"name": "emt"},
  "d3": false,
  "fixcell": false,
  "allow_symmetry_breaking": false
 },
 "__versions__": {
  "asr": "19.8.20-8ad12500add3f21047dc2b5a91cecbd3daa07d39",
  "ase": "3.19.0b1-da3288338c6896a9a5b15322d303471d826f7486",
 }
}
 



  

Result files
$ cat results-asr.relax.json
{
 "energy": -0.0003663968564069364,
…

"__creates__": {
  "structure.json": "1bb6cf42c49864c81d7f3a394918b71a"
 },
"__requires__": {
  "unrelaxed.json": "be8cc1a545f45522e9880635bfe955c5"
 },

}
 

$ cat results-asr.relax.json
{
 "energy": -0.0003663968564069364,
…

"__creates__": {
  "structure.json": "1bb6cf42c49864c81d7f3a394918b71a"
 },
"__requires__": {
  "unrelaxed.json": "be8cc1a545f45522e9880635bfe955c5"
 },

}
 



  

Important: Direct relation between scripts and CLI

$ python3 -m asr.relax --calculator "{'name':'emt'}"
Running asr.relax(calculator={'name': 'emt'}, d3=False,
fixcell=False, allow_symmetry_breaking=False)

=



  

Parameter files
$ p -m asr.setup.params asr.relax:calculator "{'name':'emt'}"

$ cat params.json
{
 "asr.relax": {
  "calculator": {
   "name": "emt"
  }
 }
}

$ p -m asr.setup.params asr.relax:calculator "{'name':'emt'}"

$ cat params.json
{
 "asr.relax": {
  "calculator": {
   "name": "emt"
  }
 }
}



  

One folder contains one material

structure.json
unrelaxed.json

results-asr.relax.json
results-asr.phonons.json
results-asr.bandstructure.json
...

Si/

Si
Ge
C

my- 
materials

Collecting to a database becomes easy



  

Recipes so far
Recipes that would work for all 
calculators

● asr.relax

● (asr.phonons)

● asr.stiffness

● asr.structureinfo

● (asr.convex_hull)

● ((asr.bandstructure))

Recipes that work only for GPAW
● asr.gs@calculate

● asr.bandstructure@calculate

● asr.berry

● asr.polarizability

● asr.effective_masses

● asr.fermi_surface

● ...



  

Summary of design choices
● Recipe = Decorated, annotated Python function
● ASR = A collection of recipes
● Results saved in json files

–Contains parameters, versions, file hashes
● One-to-one correspondence between CLI and scripts.
● One folder = one material, only have to run a recipe in a folder once.
● Put parameters in a parameter file.
● ASR is available on PyPI

– $ pip install asr



  

Discussion
● Should we have some standardized script format?
● Data provenance: “Data provenance provides a historical record of 

the data and its origins.”
– Checksums, git-hashes = reasonably data provenant?

● Issues: design choices, generality, file formats, documentation.
● ASR is available on PyPI

– $ pip install asr

● Thank you for your attention.



  

Advanced properties
● Many properties are difficult to generalize to other calculators because they 

depend on the detailed workings of each calculator
● Many properties constitute small workflows in themselves that might be 

different for every calculator.
● For example, to calculate a bandstructure in GPAW

Calculate ground state
and save to gs.gpw

Fix density and calculate eigenvalues 
along path, save to bs.gpw

Extract eigenvalues, spins etc.Extract band gap



  

Workflow

$ asr run asr.gs@calculate
$ asr run asr.bandstructure@calculate
$ asr run asr.bandstructure

# I also want the band gap

$ asr run asr.gs

$ asr run asr.gs@calculate
$ asr run asr.bandstructure@calculate
$ asr run asr.bandstructure

# I also want the band gap

$ asr run asr.gs



  

asr.gs

asr.bandstructure

Dependencies

$ python3 -m asr.bandstructure
$ python3 -m asr.gs

$ python3 -m asr.bandstructure
$ python3 -m asr.gs
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