

ATOMIC SIMULATION RECIPES

Morten N. Gjerding & CAMD mogje@dtu.dk
Department of Physics, Technical University of Denmark
ASE Workshop, Gothenburg, Nov. 2019

Proposal

We should have some standardized form for
scripts.

Outline
● What is the problem
● Our suggestion

– How should it work in practice?
– Examples
– Design choices

Normal ASE workflow
To relax a structure I would probably
start with a script like this.

I would gradually expand my script:
● Save each relaxation step
● Relax cell: UnitCellFilter()
● Etc…
In time the script would have grown
significantly.

Relax Phonons Bandstructure ...

These scripts become my recipes to
calculate properties

The big picture

Quantum Espresso

VASP

FHI-aims

...
ASEASEGPAW

 DFT codes

“Pile of scripts”
- Adam Jackson

Waste of student time?
● Many (most, all?) students go through this process

– Writing a script, improving on it
– Doing the same mistakes
– Implementing variants the same good ideas
– Converge to (mostly) the same script

● Learning experience?
– Some important lessons in this process
– Some not so important
– Some definitely a waste of time

Using new modules

Developer Module Student Script

Tutorials are often solving an artificial problem, scripts solve a real world problem.
Do we need a place for those?

Anecdote
● AIMS workshop, ASE tutorial Barcelona 2019
● “Are there any predefined scripts for relaxing a

structure?”
● Do we need a repository and some standardized

form for scripts? Could we even agree on
something?

The big picture

Quantum Espresso

VASP

FHI-aims

...
ASEASEGPAW

 DFT codes

ASR

What should such a package be/do/not do?

OUR SUGGESTION
(BASED ON OUR NEEDS,

UP FOR DISCUSSION)

What is a recipe?
● A annotated function that

returns its results as a
dictionary.

● Results are saved to a json file.
● The @command decorator takes

care of everything.
● In particular, gives the

function a command line
interface.

● The ASR package is just a
collection of scripts
containing recipes.

Command line interface
$ python3 -m asr.relax --help
Usage: python -m asr.relax [OPTIONS]

 This function relaxes a structure

Options:
 --fmax FLOAT Minimum force tolerance. [default: 0.01]
 -h, --help Show this message and exit.

Full disclosure:
The actual relax recipe

Example: Relax silver
$ ase build Ag unrelaxed.json --crystal-structure fcc

$ python3 -m asr.relax --calculator "{'name':'emt'}"
Running asr.relax(calculator={'name': 'emt'}, d3=False,
fixcell=False, allow_symmetry_breaking=False)

$ ls
relax.log relax.traj results-asr.relax.json
structure.json unrelaxed.json

$ ase build Ag unrelaxed.json --crystal-structure fcc

$ python3 -m asr.relax --calculator "{'name':'emt'}"
Running asr.relax(calculator={'name': 'emt'}, d3=False,
fixcell=False, allow_symmetry_breaking=False)

$ ls
relax.log relax.traj results-asr.relax.json
structure.json unrelaxed.json

Result files
$ cat results-asr.relax.json
{
 "energy": -0.0003663968564069364,
 "__params__": {
 "calculator": {"name": "emt"},
 "d3": false,
 "fixcell": false,
 "allow_symmetry_breaking": false
 },
 "__versions__": {
 "asr": "19.8.20-8ad12500add3f21047dc2b5a91cecbd3daa07d39",
 "ase": "3.19.0b1-da3288338c6896a9a5b15322d303471d826f7486",
 }
}

$ cat results-asr.relax.json
{
 "energy": -0.0003663968564069364,
 "__params__": {
 "calculator": {"name": "emt"},
 "d3": false,
 "fixcell": false,
 "allow_symmetry_breaking": false
 },
 "__versions__": {
 "asr": "19.8.20-8ad12500add3f21047dc2b5a91cecbd3daa07d39",
 "ase": "3.19.0b1-da3288338c6896a9a5b15322d303471d826f7486",
 }
}

Result files
$ cat results-asr.relax.json
{
 "energy": -0.0003663968564069364,
…

"__creates__": {
 "structure.json": "1bb6cf42c49864c81d7f3a394918b71a"
 },
"__requires__": {
 "unrelaxed.json": "be8cc1a545f45522e9880635bfe955c5"
 },

}

$ cat results-asr.relax.json
{
 "energy": -0.0003663968564069364,
…

"__creates__": {
 "structure.json": "1bb6cf42c49864c81d7f3a394918b71a"
 },
"__requires__": {
 "unrelaxed.json": "be8cc1a545f45522e9880635bfe955c5"
 },

}

Important: Direct relation between scripts and CLI

$ python3 -m asr.relax --calculator "{'name':'emt'}"
Running asr.relax(calculator={'name': 'emt'}, d3=False,
fixcell=False, allow_symmetry_breaking=False)

=

Parameter files
$ p -m asr.setup.params asr.relax:calculator "{'name':'emt'}"

$ cat params.json
{
 "asr.relax": {
 "calculator": {
 "name": "emt"
 }
 }
}

$ p -m asr.setup.params asr.relax:calculator "{'name':'emt'}"

$ cat params.json
{
 "asr.relax": {
 "calculator": {
 "name": "emt"
 }
 }
}

One folder contains one material

structure.json
unrelaxed.json

results-asr.relax.json
results-asr.phonons.json
results-asr.bandstructure.json
...

Si/

Si
Ge
C

my-
materials

Collecting to a database becomes easy

Recipes so far
Recipes that would work for all
calculators

● asr.relax

● (asr.phonons)

● asr.stiffness

● asr.structureinfo

● (asr.convex_hull)

● ((asr.bandstructure))

Recipes that work only for GPAW
● asr.gs@calculate

● asr.bandstructure@calculate

● asr.berry

● asr.polarizability

● asr.effective_masses

● asr.fermi_surface

● ...

Summary of design choices
● Recipe = Decorated, annotated Python function
● ASR = A collection of recipes
● Results saved in json files

–Contains parameters, versions, file hashes
● One-to-one correspondence between CLI and scripts.
● One folder = one material, only have to run a recipe in a folder once.
● Put parameters in a parameter file.
● ASR is available on PyPI

– $ pip install asr

Discussion
● Should we have some standardized script format?
● Data provenance: “Data provenance provides a historical record of

the data and its origins.”
– Checksums, git-hashes = reasonably data provenant?

● Issues: design choices, generality, file formats, documentation.
● ASR is available on PyPI

– $ pip install asr

● Thank you for your attention.

Advanced properties
● Many properties are difficult to generalize to other calculators because they

depend on the detailed workings of each calculator
● Many properties constitute small workflows in themselves that might be

different for every calculator.
● For example, to calculate a bandstructure in GPAW

Calculate ground state
and save to gs.gpw

Fix density and calculate eigenvalues
along path, save to bs.gpw

Extract eigenvalues, spins etc.Extract band gap

Workflow

$ asr run asr.gs@calculate
$ asr run asr.bandstructure@calculate
$ asr run asr.bandstructure

I also want the band gap

$ asr run asr.gs

$ asr run asr.gs@calculate
$ asr run asr.bandstructure@calculate
$ asr run asr.bandstructure

I also want the band gap

$ asr run asr.gs

asr.gs

asr.bandstructure

Dependencies

$ python3 -m asr.bandstructure
$ python3 -m asr.gs

$ python3 -m asr.bandstructure
$ python3 -m asr.gs

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

